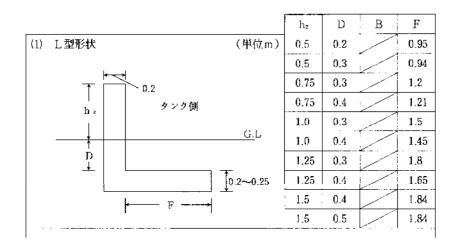

防油堤の細部審査基準


第1 防油堤の安定に関する審査

防油堤の構造基準に基づく安定に関する審査は、第3に示す「防油堤の安定計算マニュアル」により審査すること。

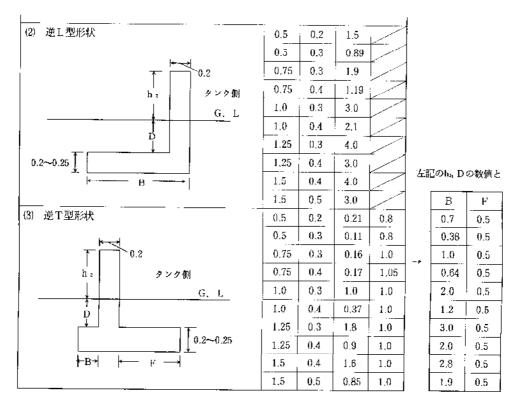
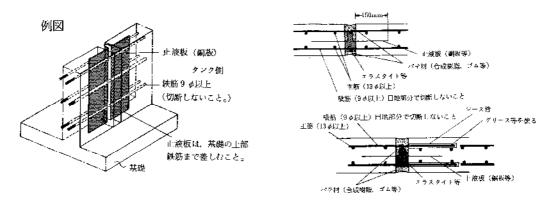

なお、土の内部摩擦角 (ϕ) =30°、土の摩擦係数 (μ) =0.5 としたときの防油堤標準形状 例 (表1) に適合するものにあっては、安定に関する審査をしなくてもよいものとする。

表1 防油堤標準形状例 ($\phi = 30^{\circ}$ 、 $\mu = 0.5$ のとき)

別記6-1

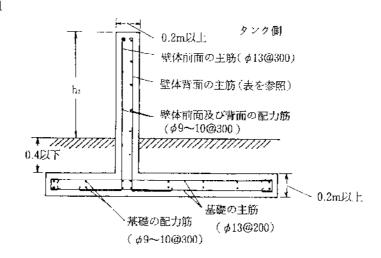


第2 防油堤の強度に関する審査

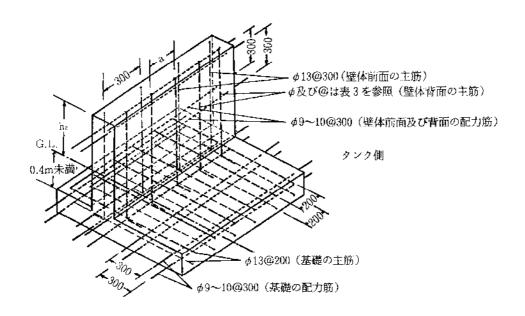
防油堤の強度に関する審査は、防油堤の構造基準によるほか、次による場合は、強度計算を要しないものとする。

1 目地

- (1) 防油堤が短形のものにあっては、その一辺について 20mごとに伸縮目地(最低4箇所)を 設けること。
- (2) 目地の間隔は、 $1 \sim 3$ c mの範囲とすること。
- (3) 目地部分の施工方法は、例図のとおりとすること。この場合、止液板は、厚さ 0.5 mm以上の銅板を用い、コンクリートとの定着部分は、150 mm以上とすること。


2 配筋

- (1) 配筋は、復鉄筋構造であること。
- (2) 壁体及び基礎の配筋は、次によること。(例図参照)
 - ア 防油堤の基礎及び壁体前面部分に用いる鉄筋は、主筋にあっては 13 mm以上、配力筋にあっては、9 mm以上のものとし、その配筋間隔は、壁体前面部の主筋にあっては 300 mm以下、基礎部分の主筋にあっては 200 mm以下、壁体前面部及び基礎部分の配力筋にあっては

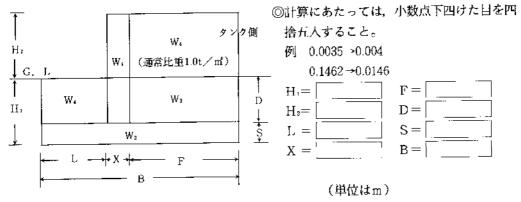

300 mm以下であること。

イ 防油堤壁体背部 (タンク側) の主筋の間隔は、表 2 に適合しているものとし、配力筋に あっては、アの配力筋の間隔と同じとすること。

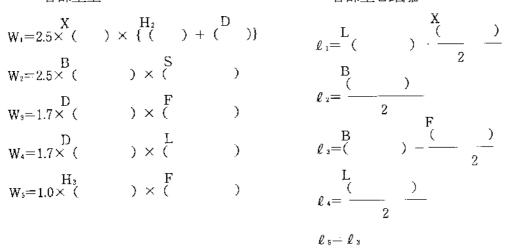
例図その1

その2

[表-2 防油堤背面の主筋]


防油堤高さ (h₂) 鉄筋種別		1.1	1,2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
SR235	φ −13 @ −200					$\phi = 19$ @ = 200					
SD295A, 295B		$\phi = 13$ @=200	$\phi = 13$ $\phi = 150$	φ 13 @≔150	φ=16 @=200	$\phi = 16$ @=200	φ=16 @=150	@200 	$\phi = 19$ @=200	φ=19 @=150	φ - 19 @ - 150

φは、鉄筋の直径 (mm)


@は、配筋の間隔 (mm)

(注) この表の適用は、防油堤基礎の土のかぶりが、0.4m以下の場合に限る。

第3 防油堤計算マニュアル

1 ΣW、Lxの算出(防油堤自重と液重量の合計(ΣW)及び水平方向重心距離(Lx)) 各部重量 各部重心距離

各部モーメント

- 2 水平方向荷重の合力値及び作用位置(基礎底面下からの距離)の算出
 - (1) 液 圧 (P_b)

$$P_b = \frac{1}{2} \times {\overset{H_2}{(}} \qquad)^2 = \boxed{ t/m}$$
作用位置 = $\chi_1 = \frac{1}{3} \times {\overset{H_2}{(}} \qquad) + {\overset{H_1}{(}} \qquad) = \boxed{ m}$

(2) 主働土圧 (P_A)

主働土圧
$$(P_{\Lambda})$$

$$P_{\Lambda} = \frac{1}{2} \times 0.34 \times 1.7 \times H_{1}^{2} = 0.29 \times ()^{2} = \boxed{ t/m }$$
作用位置 = $\chi_{2} = \frac{1}{3} \times () = \boxed{ m }$

$$P_s = \frac{1}{2} \times 3.0 \times 1.7 \times H_1^2 = 2.55 \times (1)$$
 $P_s = \frac{1}{2} \times 3.0 \times 1.7 \times H_1^2 = 2.55 \times (1)$
 $P_s = \frac{1}{2} \times 3.0 \times 1.7 \times H_1^2 = 2.55 \times (1)$

作用位置= χ₂ (主働土圧と同じ。)

(4) 地震時慣性力(P_{1A}, P_{1B}, P_{1C})

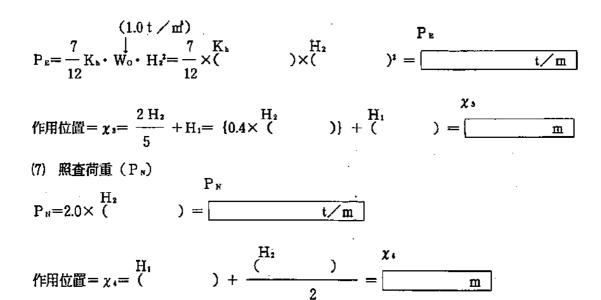
設計水平農度=
$$K_3$$
=0.15× α × ν_1 × ν_2 =0.15×0.5×1.0× ν_2 =0.075× ()

(
$$\nu_2$$
は、1.47又は1.60) $=$ $\begin{bmatrix} K_h \\ = \end{bmatrix}$

◎W₁の部分

$$P_{1A} = \begin{pmatrix} K_h & W_1 & P_{1A} \\ & & \end{pmatrix} \times \begin{pmatrix} W_1 & & & \\ & & \end{pmatrix} = \begin{bmatrix} & & & & \\ & & & & \\ & & & & \end{bmatrix}$$

作用位置 $=h_{\wedge}=$ () + $\frac{(H_{2})}{2}$ $=\frac{h_{\wedge}}{2}$ $=\frac{h_{\wedge}}{2}$


◎W₂の部分

◎W₃の部分

$$P_{1c}=$$
 K_{*} Y_{3} Y_{3} Y_{1c} $Y_$

(5) 地震時主働土圧 (PAE)

(6) 地震時液圧 (P_E)

- 3 地盤支持力 (q d) の算出
- (1) 内部摩擦角 (φ) の決定

- φ = (°) (注) ②地盤調査資料に記載されている場合は、その数値
 - ○地盤調査資料に記載されていない場合は、(N値から算出)
 - ◎地盤調査資料が添付されていないときは、基礎底面下 0.5~ 0.6mの間を十分締め固めることを条件に、 $\phi=30$ °とする。
- (2) 係数の決定(N_s, N₇, N_s)

(② $\phi = 30^{\circ}$ のとき、 $N_{e} = 16.2$ 、 $N_{g} = 7.5$ 、 $N_{g} = 10.6$)

4 抵抗水平力(P_R)の算出

$$P_{R} = P_{S} + P_{F} = P_{S} + \mu \times \Sigma W$$

$$= (P_{S}) + 0.5 \times (W) = P_{R}$$

$$= (t/m)$$

5 抵抗モーメント (M_R) の算出

$$M_{\text{\tiny R}} = \Sigma \, W \times \, \ell_{\text{\tiny s}} + P_{\text{\tiny s}} \times \frac{H_{\text{\tiny 1}}}{3} = \Sigma \, W \times \, \ell_{\text{\tiny s}} + P_{\text{\tiny s}} \times \, \chi_{\text{\tiny 2}}$$

- 6 転倒モーメント (M., M., Ms) の算出
 - (1) 満液時転倒モーメント (M。)

(2) 地震時転倒モーメント (M_E)

$$M_{E} = P_{h} \times (H_{1} + \frac{H_{2}}{3}) + P_{AE} \times \frac{H_{1}}{3} + (P_{1A} \times h_{A} + P_{1B} \times h_{B} + P_{E} \times h_{C}) + P_{E} \times (\frac{2 H_{2}^{2}}{5} + H_{1})$$

$$= P_{h} \times (H_{1} + \frac{H_{2}}{3}) + P_{AE} \times \frac{H_{1}}{3} + (P_{1A} \times h_{A} + P_{1B} \times h_{B} + P_{E} \times h_{C}) + P_{E} \times (\frac{2 H_{2}^{2}}{5} + H_{1})$$

$$= P_{h} \times (H_{1} + \frac{H_{2}}{3}) + P_{AE} \times \frac{H_{1}}{3} + (P_{1A} \times h_{A} + P_{1B} \times h_{B} + P_{E} \times h_{C}) + P_{E} \times (\frac{2 H_{2}^{2}}{5} + H_{1})$$

$$= P_{h} \times (H_{1} + \frac{H_{2}}{3}) + P_{AE} \times \frac{H_{1}}{3} + (P_{1A} \times h_{A} + P_{1B} \times h_{B} + P_{E} \times h_{C}) + P_{E} \times (\frac{2 H_{2}^{2}}{5} + H_{1})$$

$$= P_{h} \times (H_{1} + \frac{H_{2}}{3}) + P_{AE} \times \frac{H_{1}}{3} + (P_{1A} \times h_{A} + P_{1B} \times h_{B} + P_{E} \times h_{C}) + P_{E} \times (\frac{2 H_{2}^{2}}{5} + H_{1})$$

$$= P_{h} \times (H_{1} + \frac{H_{2}}{3}) + P_{AE} \times \frac{H_{1}}{3} + (P_{1A} \times h_{A} + P_{1B} \times h_{B} + P_{E} \times h_{C}) + P_{E} \times (\frac{2 H_{2}^{2}}{5} + H_{1})$$

$$= P_{h} \times (H_{1} + \frac{H_{2}}{3}) + P_{AE} \times \frac{H_{1}}{3} + (P_{1A} \times h_{A} + P_{1B} \times h_{B} + P_{E} \times h_{C}) + P_{E} \times (\frac{2 H_{2}^{2}}{5} + H_{1})$$

$$= P_{h} \times (H_{1} + \frac{H_{2}}{3}) + P_{AE} \times \frac{H_{1}}{3} + (P_{1A} \times h_{A} + P_{1B} \times h_{B} + P_{E} \times h_{C}) + P_{E} \times (\frac{2 H_{2}^{2}}{5} + H_{1})$$

$$= P_{h} \times (H_{1} + \frac{H_{2}}{3}) + P_{AE} \times \frac{H_{1}}{3} + (P_{1A} \times h_{A} + P_{1B} \times h_{B} + P_{E} \times h_{C}) + P_{E} \times (\frac{2 H_{2}^{2}}{5} + H_{1})$$

$$= P_{h} \times (H_{1} + \frac{H_{2}}{3}) + P_{AE} \times \frac{H_{1}}{3} + (P_{1A} \times h_{A} + P_{1B} \times h_{B} + P_{E} \times h_{C}) + P_{E} \times (\frac{2 H_{2}^{2}}{5} + H_{1})$$

$$= P_{h} \times (H_{1} + \frac{H_{2}}{3}) + P_{AE} \times H_{1} + P_{E} \times h_{E} \times h_{E} \times h_{E} + P_{E} \times h_{E} \times h_{E}$$

(3) 照査荷重載荷時転倒モーメント(Ms)

$$M_{s} = P_{A} \times \frac{H_{1}}{3} + P_{N} (H_{1} + \frac{H_{2}}{2}) = P_{A} \times \chi_{2} + P_{N} \times \chi_{4}$$

$$= \stackrel{P_{A}}{(}) \times \stackrel{\chi_{2}}{(}) + \stackrel{P_{N}}{(}) \times \stackrel{\chi_{4}}{(}$$

$$= \stackrel{M_{s}}{\underline{\qquad}} = \underbrace{ t/m }$$

- 7 審査
- (1) -1 地盤支持力(満液)

アeの算出

$$e = \frac{M_{\circ}}{\Sigma W} - (\ell_{x} - \frac{B}{2}) = \frac{M_{\circ}}{\Sigma W} - \{(x - \frac{B}{2}) - \frac{B}{\Sigma W}\} = [$$

$$\alpha$$
の決定 $\frac{e}{B} = \frac{e}{B} = \frac{e}{$

ウ 接地圧 (σ e) の算出

$$\sigma c = \alpha \frac{\sum W}{B} = \alpha \qquad \qquad \sum W \qquad \qquad \downarrow$$

$$SW \qquad \qquad \downarrow$$

$$E \qquad \qquad \downarrow$$

$$E \qquad \qquad \downarrow$$

$$E \qquad \qquad \downarrow$$

工 審査

(1) -2 地盤支持力 (地震)

アeの算出

$$e = \frac{M_{E}}{\Sigma W} - (\ell_{x} - \frac{B}{2}) = \frac{M_{E}}{\Sigma W} - (\ell_{x} - \frac{B}{2}) = \frac{M_{E}}{\Sigma W} - (\ell_{x} - \frac{B}{2}) = \frac{M_{E}}{\Sigma W}$$

イ αの決定

$$\frac{e}{B} = \frac{c}{B}$$

$$\otimes \frac{c}{B} = \frac{1}{6} = 0.166 \cdots 0 \ge \frac{e}{B}$$

$$\alpha = 1 + 6 \frac{e}{B} = 1 + 6 \times \frac{e}{B}$$

$$0 = \frac{1}{6} = 0.166 \cdots 0 \ge \frac{e}{B}$$

$$0 = \frac{1}{6} = 0.166 \cdots 0 \ge \frac{e}{B}$$

$$0 = \frac{1}{6} = 0.166 \cdots 0 \ge \frac{e}{B}$$

$$0 = \frac{1}{3} = \frac{1}{(\frac{1}{2} - \frac{e}{B})} = \frac{1}{3} \times \{0.5 - \frac{1}{B}\}$$

ウ 接地圧
$$(\sigma \in E)$$
 の算出 $\sigma \in E = a \frac{\Sigma W}{B} = () \times \frac{()}{B}$ $() \times () \times ($

工 審査

(1) -3 地盤支持力 (照査)

アeの算出

$$e = \frac{M_s}{\Sigma W} - (\ell, -\frac{B}{2}) = \frac{M_s}{\Sigma W}$$

$$() \qquad (B)$$

$$\frac{e}{B} = \frac{e}{B}$$

©
$$\frac{e}{B} = [\frac{1}{6} = 0.166 \cdots 0.00$$
 ≥ ₹

$$\alpha = 1 + 6 \frac{e}{B} = 1 + 6 \times \frac{\frac{e}{B}}{}$$

◎
$$\frac{e}{B} = [$$
 $\ge \frac{1}{6} = 0.166 \cdots$ $\ge \frac{1}{8}$ $= \frac{2}{3 \cdot (\frac{1}{2} - \frac{e}{B})} = \frac{2}{3 \times \{0.5 - \frac{e}{B} \cdot ()\}}$

ウ 接地圧 (σ e s) の算出

$$\sigma e_s = \alpha \frac{\sum W}{B} = \alpha \qquad () \times \qquad = \boxed{ t/m^2}$$

工 審査

$$\frac{\text{qd}}{\sigma \, e_s} = \frac{\text{qd}}{\sigma \, e_s} \qquad \qquad) = \boxed{\qquad \qquad \qquad \underbrace{\mathbb{R} \underline{\Phi}}_{NO} \qquad \qquad }$$

(2) 抵抗水平力(滑動)

ア満液

$$\frac{P_{R}}{P_{H0}} = \frac{P_{R}}{P_{A} - P_{b}} = \frac{P_{C}}{P_{A}} = \frac{P_{C}}{P_{A}} = \frac{P_{C}}{P_{b}} =$$

イ 地震

ウ照査

$$\frac{P_{R}}{P_{DS}} = \frac{P_{R}}{P_{A} + P_{N}} = \underbrace{P_{A}}_{(NO)} = \underbrace{P_{R}}_{(NO)} = \underbrace{P_{R}}_{(NO)}$$

(3) 抵抗モーメント

ア満液

$$\frac{M_{ii}}{M_{ii}} = \frac{M_{ii}}{M_{ii}}$$

イ 地震

$$\frac{M_{\text{R}}}{M_{\text{E}}} = \frac{M_{\text{R}}}{M_{\text{E}}} - \frac{1}{M_{\text{E}}} \ge 1.2$$

ОК	 	
NO		

ウ照査

$$\frac{M_{R}}{M_{S}} = \frac{M_{H}}{M_{S}} = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix} = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} \ge 1.2$$

ОК]	 1
ΝO		