温室効果ガス排出量の要因分解による評価方法

1 部門別の要因分解による評価の方法

「茅恒等式」を応用し、温室効果ガス排出量を、①活動量の変化、②エネルギー消費原単位の変化、③燃料転換(燃料転換による炭素集約度の変化)、④電気の排出係数の変化(電気の排出係数による炭素集約度の変化)の4つの排出要因ごとに分解し、要因ごとの削減量を算出する。

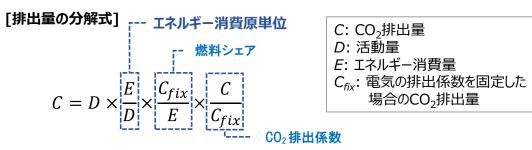
【要因分解の算定式】

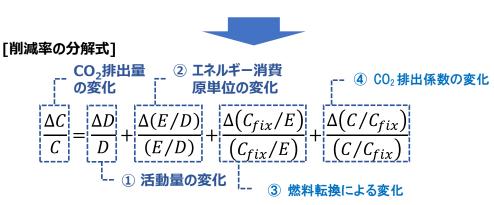
① 活動量の変化 (下表のとおり, 部門ごとに設定)

CO₂排出の起因となる社会経済活動の指標として、部門ごとに設定している。

家庭部門	■ 世帯数		
業務部門	■ 業務用建物床面積 (課税床面積のうち「店舗」,「その他」を業務用とする)		
産業部門	■ 製造品出荷額		
運輸部門	 ■ 旅客輸送量(人・キロ) (= 人口 × 1 人当たりトリップ数 × 輸送機関分担率 × 平均移動距離) ■ 貨物輸送量(トン・キロ) (= 製造品出荷額 × 出荷額当たり貨物量 × 輸送機関分担率 × 平均移動距離) 		

② エネルギー消費原単位の変化


活動量1単位当たりのエネルギー消費量。例えば、省エネ機器への買い替えや住宅の断熱化、省エネ行動などが進むと、エネルギー消費原単位は小さくなり、**CO**2排出量を削減する要因となる。


③ 燃料シェアの変化(燃料転換)

例えば、石油よりも CO₂ 排出係数の小さい天然ガスへの燃料転換や、住宅等での太陽光発電の利用が進むと、CO₂ 排出量を削減する要因となる。

4 CO2 排出係数の変化

電源構成の変化や、発電所の発電効率が改善されると、CO₂排出量を削減する要因となる。

2 住宅の断熱化による効果推計方法

(1) **2010** 年度の省エネ性能別住宅ストック比率の設定 ①省エネ基準ストック比率【全国値】を,京都市の **2010** 年度の省エネ性能別住宅ストック比率として設定。

使用データ	地域性	根拠資料
① 省エネ基準ストック比率	T 1 + 1 1 1 1 1 1	国立環境研究所 AIM プロジェクトチーム(2012 年) 『対策導入量等の根拠資料』

(2) 2013 年度の住宅の省エネ性能別ストック比率の推計

(1)の 2010 年度の省エネ性能別住宅ストック比率から、②新築着工数(棟)【京都市】と ③新規省エネ法基準達成建築物数【京都市】、④平成 11 年度省エネ基準新築住宅達成率【全 国値】を使用し、1 年間で全住宅の 1/30 が建て替えられる(住宅の平均寿命を 30 年)と仮 定して、2013 年度の省エネ性能別住宅ストック比率を推計。

使用データ		地域性	根拠資料
2	床面積区分別新築着工数(棟)	京都市	建築着工統計調査(2011~2013年度)
3	新規省エネ法基準達成建築物数	京都市	京都市への届出実績(2011~2013年度)
4	平成 11 年度省エネ基準 新築住宅達成率	全国値	国土交通省(2014年) 『住宅・建築物の省エネルギー施策について』

(3) 2010 年度から 2013 年度までの住宅の断熱水準向上による削減量の推計 2010 年度と 2013 年度の省エネ性能別住宅ストック比率に、⑤省エネ基準別の年間暖冷房エネルギー消費水準をそれぞれ乗じたものの差分から、住宅の断熱水準向上による削減量の推計。

使用データ		地域性	根拠資料
多省工	ネ基準別の年間暖冷房エネ	全国値	国土交通省(2014年)
し ルギ	·一消費水準		『住宅・建築物の省エネルギー施策について』